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NEAR-WALL TURBULENCE IN THE AXISYMMETRIC FLOW OF WEAK 

ACQUEOUS POLYMER SOLUTIONS 

V. B. Amfilokhiev and V. V. Droblenkov UDC 532.526:532.135 

The axisymmetric turbulent boundary layer is computed by using a finite-differ- 
ence method and its fluctuation characteristics are determined on the basis of 
a generalized mixing-path hypothesis. 

i. Investigation of turbulent exchange, including for polymer solution flows, is one 
of the important problems of applied modern hydromechanics. In addition to experimental 
investigations ([i, 2], say) it is expedient to produce a computational method that permits 
finding the fluctuation characteristics of different flows with a definite reliability. Such 
a method can be based on the generalized mixing-path hypothesis. Thus the possibility is 
shown in [3] of the possibility of describing the fluctuation characteristics in the near-wall 
layer of constant stress, pipes, and a flat plate boundary layer. 

However, in the majority of cases the longitudinal pressure gradient and the three-dimen- 
sional nature of the flow influence the boundary layer development. Both these factors (the 
second not in the complete volume it is true but only in the ratio of the leakage-spread 
ratio of the retarded mass of the fluid) hold in an axisymmetric boundary layer whose analysis 
is comparatively simple because of its formal two-dimensionality. The analysis can here be 
performed within the framework of the conception of a thick layer by both an integral and 
finite-difference method [4], of which the latter permits the description of derivatives of 
the averaged velocity components and their associated tangential stress distributions in bound- 
ary layer sections with an accuracy sufficient for a subsequent calculation of the fluctuation 
characteristics. 

The analysis of a thick axisymmetric turbulent boundary layer is performed in this paper 
for both a Newtonian fluid and for weak polymer solutions with the viscous-nonviscous interac- 
tion of the layer and wake with the external potential stream taken into account. Influence 
of the potential part of the flow on the boundary layer and wake parameters is taken into 
account in terms of the velocity distribution over their external boundary. To take account 
of the action of the viscous flow domain on the potential flow the latter is computed on a 
semi-infinite body formed by the external boundary layer boundary and the wake on which values 
of the normal velocity component found by means of the boundary layer and wake parameters 
are given. It is assumed that polymer admixtures influence the turbulent wake parameters only 
in terms of a change in the boundary layer characteristics at the site of layer and wake 
juncture, at the root extremity of the body. The action of the polymer admixtures on the 
potential flow is taken into account in terms of the change in layer and wake characteristics 
and the location of their external boundaries. The method in [5] is used to compute the wake 
and the method in [6], approved in [7] for the case of weak polymer solutions, is used to 
compute the potential domain. 

The axisymmetric boundary layer equation in dimensionless form in Crocco variables can 
be written in the form [8] 

a 2 (~.3 (o) a(o ( 1 ) 

with boundary conditions for the impenetrable surface 
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Fig. I. Tangential stress distribution: a) ~ = 0; b) i0; 
i) computation for x I = 0.85; 2) computation for x I = 0.93; 
3) experiment [i0], x I = 0.85; 4) experiment [i0], x I = 0.93. 

Fig. 2. Longitudinal and transvers fluctuation velocity 
component distribution in the near-wall part of the flow: 
i, 2) computation; 3, 5) experiment [i]; 4, 6) experiment 

[2]; i, 3, 4) 4Q-d~1>Iv*; 2, 5, 6) ~1>/v*. 
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x, y, r w and r are made dimensionless with respect to L. 

To solve (i) under the boundary conditions (2) factorization according to an implicit 
finite-difference scheme is used, whose basis is the method of [9]. 
sented as follows 

(3) 

Equation (i) is repre- 

I 1 1 
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(4) 

where n and m are the number of the computational grid section in x and u, Ax and Au are the 
integration steps in x and u. The values of % I , 12, 14, ~ and 13~ at the half-integer points 
n + 1/2 are determined in terms of the corresponding quantities at integer points n and n + i 
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Fig. 3. Distribution of the r.m.s, values of the longitudinal 
(a) transverse (b), and transversal (c) fluctuation velocity 
components (notation the same as in Fig. i). 

of the grid by linear interpolation. Successive approximations in each step in x are used to 
compute the boundary layer. In a first approximation ~+i = ~ is taken in a given x section. 

The values of ~n + i are refined during the factorization until sufficient accuracy in deter- 
mining the value of ~ on the streamlined surface is assured. 

To determine the turbulent stresses, the mixing path hypothesis is used according to 
which 

where s is represented in the form [4, 8] 

(5)  
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= 0.4 and ~ = 0.75 are constants governing the turbulent exchange in the inner and outer 
parts of the boundary layer; the value of the tangential stress t0 on the outer viscous sub- 
layer boundary is found from the Prandtl equation written for y = 0 

rw ( dU~ ~o I 
T O = T w - -  1 - -  o H 6  

r o ' d X  T w / 

and t h e  l o c a t i o n  Y0 o f  t h i s  b o u n d a r y  f rom t h e  c o n d i t i o n  Ho~w=9v*U~Y~ The v a l u e  o f  t h e  
p a r a m e t e r  A i n  an o r d i n a r y  f l u i d  i s  a s s u m e d  c o n s t a n t  A = A 0 = 2 6 .  The  p a r a m e t e r s  e n t e r i n g  
i n t o  ( 6 )  a r e  r e f i n e d  i n  a g i v e n  l a y e r  s e c t i o n  d u r i n g  i t e r a t i o n .  

Taking  i n t o  a c c o u n t  t h a t  p o l y m e r  a d m i x t u r e s  a c t  on t h e  t u r b u l e n t  exchange  p r i n c i p a l l y  
in direct proximity to the wall, their influence can be determined in terms of the damping 
factor A that will depend on the kind of polymer, its concentration in the solution, and 
certain hydrodynamic characteristics of the flow. This dependence can be found, say, by 
using the Meyer correlation, by using the relation between A and a change in the additive 
constant in the logarithmic velocity profile by the quantity AB [4]. 
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A = A o = 26 fo r  v* < v~ , ( 7 )  

�9 ~ A = A o [ 5 ( v * / v ~ )  ~/4o~--4] f o r  v ~ ~ vo,  

where v * = ] / ~  is the dynamic velocity, v~ is its critical value corresponding to the 
beginning of the polymer effect, and ~ is the Meyer parameter. The quantities v~ and ~ are 
empirical constants whose values depend on the kind of polymer and its mass concentration c 
in the solution. Thus v~ = 0.023 m/see and ~ = i0 correspond approximately to a polyethylene 
oxide solution WSR = 301 for c = 10 -5 For these values the boundary layer of a body of revo- 
lution that is a combination of an ellipsoid and a cone with a total elongation of 6.21 was 
analyzed for a Reynols number 1.26"106 , that corresponds to conditions for carrying out an 
experiment [i0]. The profiles of certain of the tangential stresses obtained in the analysis 
are displayed in Fig. i, where their agreement with experimental data in the case of an ordi- 
nary viscous fluid is quite satisfactory. Results of computations of profiles of average 
velocity projections and certain integral characteristics of the layer are presented in [4]. 

Introduction of the polymer admixtures in all sections for x I > 0.7 results in an in- 
crease in the mixing length in the outer part of the layer. Up to x I = 0.85 the presence of 
a dissolved polymer in the flow yields a diminution in the tangential stresses in the whole 
boundary layer thickness. For x I > 0.85 the polymer admixtures diminish x in the viscous 
sublayer and the buffer domain and in the region of the outer boundary layer boundary but 
increase then in the central part of the layer, the domain of its turbulent core. 

2. To describe the r.m.s, values of the fluctuation velocity v~i> their representation 
[3] in terms of the mixing length s can be used, which is in dimensionless form 

Y < u~ >/Uo = t ~ u ~ ,  ( 8 )  

where the subscripts i = i, 2, 3 correspond to the longitudinal, transverse, and transversal 
directions 

li = lo I1~, 

l i i = A  i 1 - - B i e x p  - - C i  Av*U~ ~ ' 

where the values of s are calculated from the relationships (6) while the coefficients Ai, 
B i and C i govern the singularity of the fluctuation velocity distribution in direct proximity 
to the wall and are taken to be equal to [3]: A I = 2, A 2 = I.i, A 3 = 1.5,B I = 0.625, B 2 = I~ 
B 3 = 0.99, C I = i, C 2 = 0.5, C 3 = 0.7. The results of computations of the longitudinal and 
transverse fluctuation velocity components for the near-wall part of the flow for A = 125 are 
compared with measurement data [i and 2] in Fig. 2 and display satisfactory agreement between 
the experimental and computational quanties, which permits utilization of the proposed method 
of computing the fluctuation velocities for their determination in boundary layers in an ordi- 
nary viscous fluid and in weak aqueous polymer solutions. 

Computation of the flow around a body of revolution from [10] were performed to analyze 
the influence of polymer admixtures on the near-wall turbulence characteristics in the case 
of gradient flow in an axisymmetric boundary layer. The results of these computations are 
displayed in Fig. 3 for two layer sections, x I = 0.85 and x I = 0.93. The dimensionless lon- 
gitudinal pressure gradient dCD/dX I in these sections, where the pressure coefficient is Cp = 
2(p - p0)/(pU~), equals 0.74 and 0.40, respectively. Comparison of the computation results 
with test data [10] in the case of ordinary viscous fluid flow around a body in the presence 
of a longitudinal pressure gradient shows satisfactory agreement. 

The presence of polymer admixtures in the flow results in an increase in the longitudinal 
fluctuation velocity component in the area of the wall and its diminution in the outer part 
of the layer. Up to the section with x I = 0.9 both the transverse and the transversal fluc- 
tuation velocity components diminish in the whole layer thickness upon insertion of the 
polymer. For x I > 0.9 these fluctuation velocities in the polymer solution diminish at the 
wall and in the outer part of the layer while they grow somewhat in the turbulent core zone 
as compared with corresponding quantities in an ordinary fluid. Such a complex nature of the 
action of polymer admixtures on the fluctuation characteristics of the stream is explained 
by their strong influence in direct proximity to the wall, by diminution of the bo~mdary 
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layer thickness upon their insertion, and by the presence of a longitudinal pressure gradient 
and diminution of the body radius in the region of its root extremity. Attention is turned 
to the fact that sufficiently significant fluctuating velocities still exist in the stream 
on the outer boundary layer boundary, i.e., for y = 6 (u = 0.99). 

NOTATION 

x, y are dimensionless longitudinal and transverse coordinates in the boundary layer; r w is 
the dimensionless body radius; x I is the dimensionless coordinate along the bodyaxis of 
symmetry; L is the body length; Y0 is the dimensionless viscous sublayer thickness; r 0 is 
the radius corresponding to the outer viscous sublayer boundary; 6 is the dimensionless 
boundary layer thickness; 61 is the dimensionless thickness of the inner part of the layer; 
s s are dimensionless mixing paths; u is the dimensionless longitudinal average velocity 
component; i i are fluctuation velocity components'; U 6 is the velocity on the outer boundary 
layer boundary; U 0 is the free-stream velocity; u 6 = U6/U0, U l is the velocity at y = 61; 

is the kinematic viscosity; ~* = ~/(U0.L) is the dimensionless viscosity; ~ is the dimen- 
sionless turbulent viscosity; z , ~, A 0 are turbulence constants; 6, A are parameters govern- 
ing the turbulent exchange in the outer and near-wall parts of the boundary layer; Ai, Bi, C i 
are coefficients governing the fluctuation velocity distribution in the wall area; ~ is the 
tangential stress; T i is its value at y = 61; ~0 is its value on the outer viscous sublayer 
boundary; ~w; is its value on the wall, ~* = ~/pU0); n, m are numbers of computational grid 
sections in x and u, respectively; 8 is the angle between the axis of the body of revolu- 
tion and the tangent to its meridian section; h i are coefficients in the equations of motion 
written in Crocco variables; p is the fluid density; c is the polymer mass concentration in 

the solution; Vq-~--. > is the r..m.s value of the fluctuation velocity components, i = i, 2, 3; 
i 

is the Meyer parameter; p is the pressure; P0 is the pressure at infinity; Cp is the pres- 
sure coefficient. 
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